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ABSTRACT .

The addition of helical quadrupole focusing to a modified betatron con-

figuration is shown to give rise to an electromagnetic instability under

certain conditions. The instability arises from a three-wave coupling

I. between the helical field, a transverse mode on the beam and a transverse-
electric waveguide mode. An analytic dispersion relation is derived.

Several features of the instability are confirmed using three-dimensional

computer simulations.
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I• INTRODUCTION

Betatrons and other recirculating accelerator designs have been studied

in recent years as compact accelerators for high-current electron beams. 1 6

Conventional 7 and modified' betatrons require precise matching of the beam

energy to the vertical magnetic field if a fixed major radius is to be

maintained. To overcome this restriction, strong focusing in the form of a

helical magnetic quadrupole has been added to the modified betatron

configuration. 3 ,8  This considerably increases the tolerance of the

device to mismatch. In this paper, we show that helical quadrupole -

focusing can lead to an electromagnetic instability arising from a

three-wave interaction between the static helical field, a transverse mode. .

on the beam, and a transverse-electric (TE) waveguide mode. This behavior

is reminiscent of that which occurs in planar geometry in the presence of a

rippled magnetic field.9  Unlike the free-electron laser instability, which

was recently analyzed in the presence of helical quadrupole focusing,1 0

longitudinal bunching of the beam plays no significant role in the insta-

bility which we describe here. Also, the instability is essentially I
*independent of the radius of curvature of the device. It is thus not

related to the negative-mass instability, for example. The main effect of

finite radius of curvature is to discretize the toroidal mode-numbers.

This can be important, since if the instability width is narrow enough, it I ,

can fall between two allowed mode-numbers and disappear (see Section II).

In Section II, we give an analytic theory of the instability. In

Section III, we obtain a simplified dispersion relation which yields an

instability criterion. Section IV details comparisons between the analytic

theory and three-dimensional particle simulations. Section V gives our

conclusions.

Throughout the paper, we use convenient units where the electron charge

e and mass m, and the velocity of light c, are scaled out. Lengths are

normalized to c/w0  1 cm, frequencies to w 0 ' velocities to c, densities to

w2m/4we, electric and magnetic fields to mcwo/e.

4
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II. ANALYTIC MODEL OF INSTABILITY

The geometry and coordinate system we use are illustrated in Figure 1.

An electron ring of major radius R and minor radius a circulates around the

center of a conducting torus whose major and minor radii are R and b,
respectively. The externally applied magnetic fields consist of a vertical

field Bz - r- s , where s is the external field index (we assume s = 112)

a solenoidal field Be , and a helical quadrupole field Bq. This is the

configuration of the stellatron accelerator.3  A configuration where the

helical quadrupole field is generated by two current-carrying wires instead 71

of four also has been proposed.6  We assume that the beam can be modeled as

a string of rigid disks. This means that we follow the transverse motion

of the beam centroid, and ignore any internal dynamics. This treatment is

valid provided the drift-tube minor radius is much greater than the beam

radius, b > a, since the fields we need to consider have a transverse scale

length -b. We ignore the perturbed e-motion of the beam under the

assumption of relativisitic stiffness in this direction, i.e., y 3 1, where

Y is the beam relativistic factor. .!

In equilibrium, the matched value of the vertical magnetic field is

Bz = yVe/R, where V, is the toroidal beam velocity. Linearizing about the

equilibrium position, we obtain the following equations of motion for the I •

perturbed coordinates r, z of the beam centroid.3

1 2- 2-r + 2zr -Rez + Uaz(rCos me + zsin me) = -E r V0Bz , (1)

z + 7 2zZ + Qr 2-zrSin me - zcos me) =-Ez + VB r  , (2)

where a dot denotes the total time derivative a/at + (V6/R)a/ae, z"

B z/Y 0 = B/y, v denotes the amplitude of the quadrupole field index, and

E, B denote the perturbed self electric and magnetic fields acting on

5 V
*. . . . . .
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the beam at the perturbed position. Letting E z + ir, Eqs. (1), (2) can

be written

+ 2z iReo -size "Ez + iE + iV (B + iBr) ]  (3)

where * denotes the complex conjugate. To calculate E, B, we use a Green's
function approach. Maxwell's equations can be written

V XVx E w2E iJ , (4)

B -Iv x E , (5)

-iwt+it8
where we assume an e dependence for the perturbed fields and cur-
rents. The solution to Eq. (4) can be written down using a dyadic Green's

function, 11 constructed from the solutions to the homogeneous counterpart
of Eq. (4). The expressions obtained are infinite series. 12  The expres-
sion for Er, for example, evaluated at the location of the beam, is

Er : -VW( - )r 2 2 2
n+t /R -

/R1 • 0 b-91
-'(A R /Ro + -J r (6)2- 2 . 2 r a

X + I2/R W,)( + t 2 /R2 ) r

where

1 2 1 2 =In [b - J (b) l 2  [J1(b)]

w ere J is a Bessel fu "tion, and where n denotes the roots of JI(nb) = 0,
X denotes the roots of J1 (b) = 0, and 0(b/R) denotes toroidal corrections,

which we neglect under the assumption R >> b. Also, v is Budker's param-

eter, i.e., the number of electrons per unit length of the beam times the
classical electron radius. The last term in Eq. (6) results from evalu-

ating the equilibrium radial electric field E0 at the perturbed position.

7
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In deriving Eq. (6), we have used the rigid-disk approximation to write
r = -Pr = i(W - taz )pr, where p is the beam density. Similar expressions .

are obtained for the other fields. To simplify the analysis, we citract

from the series those terms containing the lowest root of Jd(nb) = 0,

denoted by nil. These terms contain the transverse-electric TEll reso-

nance, which is the lowest electromagnetic waveguide resonance. All other

self-field contributions are neglected. This procedure is equivalent to

treating the beam as a weak perturbation of the vacuum TEll eigenmode.

We now proceed to solve Eq. (3) by writing E in the form

eie  i t + t e! (7)

where +, - refer to "forward" and "backward" waves respectively. Substi-

tuting this into Eq. (3), we obtain the coupled equations

2
2 12 . + o + 2. -

-(+ - z2 +P e 2 2E !

2 + + + (-.

2 n1  (t + m)2/R 2 J mt =~(t ,(b

-42 + 2 + 2 + 2 0

+ nz)2 + 1 M - 2+ +),

((_ +fz )2 + 2 2* +d

_Q + 72 Q z . (t + m)2/R2 -m-t (

#22

+ ~ ~~ z - 0(d
2~~~~~" 21 +m2/2 _-

W ni R

:i , .... ., ..... .., . . -, - ., •. .. ., .. .. • .. • . .., , , . :: , .



where a+ = T LQZ' = VI /y for n = i (a 8.4v/-yb 2 ). Note that this

is a closed system of equations, in which only mode-numbers I and -m -

appear. This is a consequence of the complex-conjugate sign appearing in
+ -Eq. (3). Further, note that E is coupled only to gm-' and E is coupled

only to E -m-t" Thus the 4x4 matrix of Eq. (8) splits into two 2x2

matrices. The determinant of one 2x2 matrix gives the dispersion relation

2
2 1 2 + 2

1 2 + z "

1 2 14 (Q Q 11 = 0 (9)
7 - 2 2 - + m)2  " 2 z

Snil /

The determinant of the other 2x2 matrix can be obtained from Eq. (9) by - .. "

letting w + -w. Having obtained a root for w from Eq. (9), the correspond-

0 ing normal mode for E can be obtained from Eqs. (8a, 8b), and is a linear

combination of two terms with space-time dependences exp(ite-iwt) and

exp[-i(m + X)e + iwt] respectively.

Multiplying out the dispersion relation in Eq. (9), we obtain an eighth

degree polynomial in w. Numerical solution for the sample parameters in

Table I gives the set of curves shown in Fig. 2. The parameter c in

Table I is related to P by ii c m/2Q.  The curves can be classified as

follows:
Electromagnetic modes: w n22 + 22 n + (m + 2/R

Cyclotron modes: w (m + t)n z + S0 z - ne 9

Low frequency transverse modes: w (m + t)Qz B ' + B (10)

where aB 1/4 f2 /%. These approximate forms are based on the assumption

Q 0 S1' which is satisfied for typical stellatron parameters.

.9
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TABLE I. HIGH-CURRENT STELLATRON PARAMETERS USED IN PARTICLE SIMULATIONS

Torus Major Radius 1 m

Torus Minor Radius 8.4 - 9.5 cm

Beam Major Radius 1 m

Beam Minor Radius 2 cm

Beam Current (1) 300 A - 10 kA

Beam Energy (y) 7

Toroidal Magnetic Field 5 kG

Vertical Magnetic Field 118 G

Quadrupole Field (c) 0.7

Quadrupole Mode-Number 14-30

1

pl
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0
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-0.02
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Figure 2. Frequencies and growth rates, denoted by air and ~
respectively, obtained from the dispersion relation
Eq. (9), for Table I parameters with b = 8.8, 1 =10 kA
m =22. In (a) , the t'.o unstable interactions are
circled. In (b), growth rates at integer (allowed)r
values of ~.are shown.



It can be shown from Eq. (9), and is apparent from Figure 2, that the

dispersion relation is symmetrical about the line z = -m/2 (m is an even

integer, equal to twice the number of minor turns the helical conductors

make in going one major turn around the torus). More precisely, if we

define L' = L + m/2, then w + -w* as L' + -'. In the following, we will

look only at L' > 0. Results for L' < 0 follow by symmetry.

Instability occurs due to the intersection of the curve w (m + )z -

(A) with the electromagnetic mode w - Vn 1 + ' 2/R2. The instability can be

thought of as a parametric process1 3 in which the quadrupole field plays

the role of a pump wave. If we denote the three interacting modes by sub-

scripts 1,2,3, then we get the following frequencies and mode-numbers:

Pump wave: w, 0 , kI = m/R

Electromagnetic wave: = L+ ' /R k ,'.'.R

Slow transverse wave: w'3 (m + )'z , k3 = (m + 1)/R (11) 1.."

In terms of this picture, instability occurs when the usual matching

conditions are approximately satisfied (w+ 2 3 kl + k2  k3)"
Energy for the instability is provided by the beam via the negative-energy

slow transverse mode.

F:

12 t
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III. DERIVATION OF INSTABILITY CRITERION

An approximate expression for the growth rate can be obtained by

letting w = w + 6, where wI I2 in Eq. (9), and keeping
2terms to order 6 . This gives the quadratic expression

2
-2w ii(,ii ,- l- z + il) e6

+ 2 11 (wii - tz)(Wll - z + ne)[ (t + m)"z - 11]ne

+ (W - M 2 2 l z 6 - (Wl - z)

([m +t) z -z 11]e 0 0 (12)

Defining the quantities yI, Y2 9 Y3 by

y = 2ll( iI t'z)(W1 l "- z + ne)[( .t + m)Qz will]fe -

Y= -(w'e z ) 2  (13)

24
= 2w1I z

the condition for instability can be written .

(y1 +y 2  < 4yIy2  , (14a)

or, equivalently, k
(YI - Y2 " 'f3 ) 2 < 4y 2Y3 '(14b) ..

Equations (12)-(14) allow us to make some more exact statements about the

conditions for instability. From Eqs. (13) and (14b), we see that the

instability disappears for p = 0, as one would expect. Equation (14a)

shows that (I + m)sz > w1 I (i.e. yI > 0) is required for instability

(assuming a > 0; the case n < 0 is discussed later). This means that

C the instability turns on when the frequency of the transverse beam mode is r
somewhat above the TEll eigenfrequency, rather than exactly equal to it.

13
...
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I..
To see how the instability turns off as I increases, we rewrite Eq. (14a)
to obtain

Y22 > (15)

I[.
11 z I.

as the criterion for instability. The term yI is sensitive to the value of

I. through the factor (t + m) z - W1. As t increases, y1 eventuallyz
becomes large enough to violate this inequality, and the instability dis-

appears (cf. Figure 2). Equation (15) also shows that as v + 0, (so that

Y2 + 0), and v + 0, the unstable region in I-space becomes narrower. If t

were a continuous variable, then the instability would persist near

(I + m)z =W 11 as long as v and v were finite. Since t is discrete in a

toroidal system, however, the unstable region can fall between two integer

values of t, and no instability would be seen.

Finally, from Eqs. (12) and (14a), the peak growth rate as a function

of v is found when p is chosen so that y1 + Y2- Y3= 0. The growth rate .

r is then given by

r 2 [(m + t - (
r 2 C iIi 11B> )z + . (16)

For the parameters of Fig. 2, this equation predicts r = 1.06 x 10-2 for

I = 0, in good agreement with the exact result of 1.12 x 10-2 which

occurs for e = 0.8 ( - 380).

Thus far, we have assumed n0 > 0. If n is negative, then Eq. (14b)

shows that the instability disappears. This is to be expected since the

slow transverse wave then becomes a fast, positive energy wave. At the

same time, the cyclotron wave w - (m + E)6z + n becomes a slow wave, with

the potential for an unstable interaction. We have not examined this case,

however, since previous calculations3 have shown that the parameter space

in which single particle orbits are stable shrinks greatly when the sign of

is opposite to that of m.

14

A!. ....



IV. COMPARISON WITH NUMERICAL SIMULATIONS

To verify the above analytic calculations, we have performed three-

dimensional numerical particle simulations with the code IVORY. For these

simulations, field quantities are assumed to have the form

F(r,ez,t) fn (rzt) ein  (17)
n

In the r-z plane, field quantities are represented on a two-dimensional

spatial mesh. The self-consistent fields of the beam are advanced in time

using the full Maxwell's equations. Particles are advanced using the full

Lorentz force equations. The stellatron fields are computed from analytic

expressions.3  In deciding on parameters for the simulations, computing

costs constrain us to choose cases which minimize the running time and

storage requirements. Thus, we concentrate on cases with large expected

growth rates. In addition, we choose either X = 0, or choose m + x to be

a small integer multiple of t. This minimizes the number of particles .
needed to resolve the different mode-numbers. For t = 0, for example, we

see from Eqs. (11) and (17) that only mode-numbers 0, ±m, must be repre-

sented in the simulations.

go

Choosing 1 = 0, we used the parameters in Table I with b = 8.8 cm and a

10 kA beam current, and performed simulations for different values of the

quadrupole mode-number m. The growth-rates obtained are plotted in Fig. 3

versus those obtained from Eq. (9). We also show the growth rate from a

simulation for m = 22 in which the beam was represented by a string of

rigid disks in the code, instead of the more realistic particle representa-

tion. There are at least two possible reasons why agreement with the

analytic result is better for the rigid disk simulation. First, the ini-

tial field energy level is lower for the latter due to the absence of

internal degrees of freedom of the beam, so that there is a longer visible ... .-

period of linear growth. In the simulations with particles, the field

energy only increases only about one order of magnitude over its initial

value before saturating, as shown in Figure 4. This means that the growth

measured may not be truly exponential. Second, in the particle simulations

15 r
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PARTICLE SIMULATIONS

X RIGID DISK SIMULATION

i'

0.01

I' K I

20 22 24 26 28 30

m
Figure 3. Growth rates of instability versus quadrupole mode-

number mi (which must be an even integer) for parameters
in Table 1, and b = 8.8 cm, I =10 kA. Theoretical
results (solid line) are compared to simulation-code
results.
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there is a spread in the energy of the particles due to space-charge,

giving rise to a spread in transverse oscillation frequencies. This may

have a stabilizing effect.

There is good agreement between simulations and theory as to the

turn-on and turn-off of the instability. The TE cutoff frequency for the
drift-tube is nil- 1.84/b - 0.21. Figure 3 shows that, in agreement

with the analytic prediction (Sec. III) instability sets in for

m > nil/Qz - 21. No instability is seen during the length of the simula-

tions for m > 28 (we ran cases for m = 28, 30).

Further evidence of the electromagnetic character of the instability

comes from two simulations where the minor cross-section of the drift-tube
was varied keeping m fixed. For m = 20, I = 10 kA, b = 8.8 cm (other

parameters as in Table I), no growth was observed, since m/R < 1.84/b. On

increasing the minor radius to 9.5 cm, however, strong growth was observed.

In addition, a field contour plot of the n - 0 component of the perturbed

Be, shown in Figure 5, reveals a TEll structure.

In order to see whether the aspect ratio of the torus affects the

instability, we increased the major radius R first to 10 m and then to

100 m, keeping m/R fixed at 0.22 and choosing X = 0. No significant change

in the growth-rate was observed in the simulations. This is in contrast to

the negative-mass instability,14 where the growth rate typically falls off

as 1/R.

Next, we tested the v1/2 dependence of the growth rate on the beam

current predicted by Eq. (16). The parameters in Table I with b = 9.0 cm,

m = 22 were used to perform simulations at 300 A, 1 kA and 10 kA beam

currents.The results in Figure 6 show that the predicted scaling is

supported by the simulations.

18
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I b .

Thus far, we have reported on results for x = 0. Now, we look at a

case for which I = m = 14. The dispersion diagram for this case, obtained

from Eq. (9), is similar to that in Figure 2, except that one of the

unstable regions occurs around X = 14. The simulation parameters used are

those in Table I, with I = 10 kA, b = 8.4 cm chosen to enhance the growth

rate. From Eqs. (11), (17), we see that mode-numbers 0, ±, ±(t + m) must

be represented in the simulation code (z = 0 must always be present to

represent the equilibrium fields). Field energy in the modes fnj = P,

(9 + m) is observed to grow exponentially at a rate r = 6.3 x -3, L

compared to the analytic rate 7.8 x 10-3. In this case it is the Inj =

14 field plots which show a TE mode character similar to that in Figure 4.

The nonlinear development of the instability is an important issue. To

address it completely, many modes would have to be kept in the simulation

code, since nonlinear effects give rise to the generation of modes other

than those involved in the linear growth stage. However, we believe that

the simulation results with just the linear modes present may give a good

guide to the nonlinear development of the instability for the following

reasons. First, the quadrupole field gives a initial perturbation to the

mode number m, so that the fields in this mode are not growing from random

noise (see Figure 4). Second, although wave-wave interactions are not

treated correctly if we do not include other modes, the wave-particle

interactions are treated nonlinearly. The simulations show that in those

cases with large linear growth rates, which we can therefore afford to run

to "saturation", the wave amplitude grows until the beam strikes the wall

(see Figure 4). As a result, most of the beam particles are lost, leaving

a large amplitude TE wave in the drift-tube.
11

Finally, we look at what our analysis predicts for the stellatron

experiment presently under way at the University of California at Irvine

(UCI). 15s, 6 The parameters for this experiment are tabulated in Table .1
I1. Because of the low current, the width of the instability is quitenarrow, extending over at most one 9-number. As a result, small changes in

20
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parameters can cause the instability to abruptly appear and disappear [cf.

Section III]. We find that the beam is unstable in the region y = 2.4 to

2.45. With a one-turn accelerating voltage'5 of 500 V, the beam would

spend sufficient time in this region to undergo 5-6 e-foldings. This

*w instability may be related to the current disruption seen on some shots

during the early part of the acceleration.16 We emphasize that this is a

tentative explanation. It has also been suggested that the negative-mass

instability may be responsible for this disruption.
16

TABLE II. PARAMETERS OF UCI STELLATRON

Torus Major Radius 41 cm

Torus Minor Radius 4 cm

Beam Current 200 A

Beam Energy 20 kV - 4 MeV

Toroidal Magnetic Field 0 - 10 kG

Vertical Magnetic Field 0 - 400 G

Quadrupole Field (e) 0.18

Quadrupole Mode-Number 12
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V. SUMMARY AND CONCLUSIONS
F-

We have derived a dispersion relation for a parametric electromagnetic

instability in a stellatron accelerator. The instability arises from the
interaction between the quadrupole winding, a negative-energy transverse -"

wave on the beam, and an electromagnetic wave-guide mode. The growth rate I
of the instability is independent of the radius of the toroidal drift-

tube. It therefore occurs in straight as well as toroidal systems. Three-

dimensional numerical simulations of the stellatron have been carried out

with the code IVORY. The simulated linear growth rates and conditions for

the onset of the instability are in reasonably good agreement with the

analytic model. The simulations show strong disruption of the beam in the °"

nonlinear regime, leading to loss of current. Our calculations predict

some growth of the instability for the parameters of the UCI stellatron

experiment. The instability may be a factor in limiting the beam current

in this experiment.

lipi
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